Neurochemical actions of anesthetic drugs on the gamma-aminobutyric acid receptor-chloride channel complex.

نویسندگان

  • J P Huidobro-Toro
  • V Bleck
  • A M Allan
  • R A Harris
چکیده

Interaction of intoxicant-anesthetic drugs with the gamma-aminobutyric acid (GABA) receptor-chloride channel complex of mouse brain was studied using the binding of [35S]t-butylbicyclophosphorothionate (TBPS) to isolated membranes and the GABA-stimulated uptake of 36Cl- by membrane vesicles. Anesthetic drugs, including barbiturates, chloroform, diethylether and ethanol, inhibited the binding of TBPS and enhanced the GABA-dependent influx of chloride. In the presence of bicuculline, barbiturates increased the binding of TBPS, but this action was not shared by other anesthetic agents. Inhibition of TBPS binding was found with drug concentrations that produce anesthesia in vivo, whereas augmentation of GABA action occurred at subanesthetic concentrations. Effects of a series of n-alcohols (methanol to decanol) were studied on TBPS binding and membrane fluidity (using 1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe). The potencies of the alcohols for inhibiting TBPS binding and fluidizing synaptic membranes were similar to their anesthetic potencies, but there were differences in the relative potencies of the drugs for inhibition of TBPS binding and membrane fluidization. These results, together with effects of assay temperature, suggest that effects of anesthetics on the GABA receptor-chloride channel complex were not due to changes in bulk membrane fluidity. Correlation of anesthetic potencies of chemically diverse agents with both inhibition of TBPS binding and augmentation of GABA-dependent chloride flux suggests a role for the GABA complex in anesthesia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and direct modulation of GABAA receptors by halothane.

BACKGROUND Hypotheses regarding the nature of channel modulation by volatile anesthetics have focused primarily on "membrane actions" of anesthetics and more recently on direct actions of volatile agents on receptor proteins themselves. With the recognition that many channels are subject to modulation by intracellular enzymes, such as protein kinases and phosphatases, and recent demonstrations ...

متن کامل

Barbiturate receptor sites are coupled to benzodiazepine receptors.

Barbiturates enhance the binding of [3H]diazepam to benzodiazepine receptor sites in rat brain. This effect occurs at pharmacologically relevant concentrations of barbiturates, and the relative activity of a series of compounds correlates highly with anesthetic activity of the barbiturates and with their ability to enhance postsynaptic inhibitory responses to the neurotransmitter gamma-aminobut...

متن کامل

Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?

In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain ...

متن کامل

General Anesthetic Actions on GABAA Receptors

General anesthetic drugs interact with many receptors in the nervous system, but only a handful of these interactions are critical for producing anesthesia. Over the last 20 years, neuropharmacologists have revealed that one of the most important target sites for general anesthetics is the GABA(A) receptor. In this review we will discuss what is known about anesthetic - GABA(A) receptor interac...

متن کامل

Pentobarbital and picrotoxin have reciprocal actions on single GABAA receptor channels.

Pentobarbital (PB) and picrotoxin (PIC) bind to allosterically coupled sites on the GABAA receptor complex but have opposite effects on GABA receptor currents. PB, an anesthetic/anticonvulsant, enhances, and PIC, a convulsant, inhibits GABA receptor currents. PB and PIC also had opposite effects on single main conductance channel GABA receptor currents recorded from excised outside-out patches ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 242 3  شماره 

صفحات  -

تاریخ انتشار 1987